

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS121 HV-1000 Rev. 3, Date 01.11.2014

HV-1000	LIME RUTILE HARDFACING ELECTRODE DEPOSITING WELD METAL WITH COMPLEX CARBIDE PROVIDING HIGH HOT HARDNESS WITH EXCELLENT RESISTANCE TO ABRASION									data sheet NO. 121		
SPECIFICATION												
CLASSIFICATION						-						
PRODUCT DESCRIPTION	The design emphasis of the flux is designed to ensure a slag solidification range that allows the chrome carbide particles to be evenly distributed within the austenitic alloy matrix, so ensuring complete uniformity of hardness. The balanced lime rutile flux contains the appropriate alloying elements and is bound with a blend of silicates that ensures both coating strength and resistance to moisture absorption.											
WELDING FEATURES OF THE ELECTRODE	The electrode welds with a stable arc and strikes and re-strikes readily. The weld bead is smooth but not as bright as that obtained with straight chrome carbide types and the weld profile is slightly more convex. UNCONTROLLED The metal recovery is some 180% with respect to weight of the core wire, thus reducing welding time. The weld deposits are non-machinable and non heat treatable.											
APPLICATIONS AND MATERIALS TO BE WELDED	In addition to conventional applications, involving heavy abrasion resistance against minerals etc, this alloy is used to particular advantage when the component to be surfaced is subject to use at elevated temperatures, eg: bell housings on blast furnaces, cement furnaces, pump casings and so forth.											
WELD METAL ANALYSIS COMPOSITION % BY Wt.	Min. C Max. 4	C Mn 3.0 - 4.0 1.5	Si 0.5 1.5	Cr 24 32	M 2.0 4.0	o W 0 3.0 0 4.5	N 2 3	b .0 1 .0 3	V 1.0 3.0	Ti - 1.0	Fe	
	Typical 3	3.2 0.7	0.8	25	3.2	2 3.8	2	.2 1	1.6	0.5	Bal.	
WELD METAL HARDNESS (ALL WELD METAL)	AS WELDED (150°C PRE-HEAT & INTERPASS)			HRC		HV		The weld me stability and		etal exhibits thermal resistance to oxidation up		l tion up
	1 st Layer			48 – 54		480 – 575		to 100	0°C.			
	2 nd Layer			56 – 62		610 – 7	610 – 745		4(HV (typical) 00°C HV 350	
	3 rd Layer			58 – 64 655 –			800 ⁶⁰			800°C F 800°C F	IV 290 IV 240	
	Actual hardness will be affected on base material composition, number of layers, heat											
WELDING AMPERAGE AC or DC+	Ø x Length (mm)	Ø x Length (mm) 3.2 x 350		4.0 x 400			5.0 x 400					
	Min.	100		150)		200				
	Max.	150		220			260					
OTHER DATA	Electrodes that	at have beco	me	damp s	shou	uld be re	e-drie	ed at ²	150°(C for 1	hour	
RELATED PRODUCTS	Please contact our Technical Department for detail											