

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

SECTION 5

WI-0304 DS52 RD-98B3 Rev. 1, Date 11.10.2010

RD-98B3	LOW HYDROGEN - IRON POWDER ELECTRODE FOR WELDING 2.25Cr -1Mo STEELS SUBJECTED TO SERVICE AT ELEVATED TEMPERATURES								HEET 2	
SPECIFICATION	AWS A5.5				BS EN ISO 3580B			JIS Z 3223		
CLASSIFICATION	E9018-B3				E6218-2C1M			DT2418		
	The design emphasis of the chemically basic flux is engineered to ensure the optimum weld metal properties demanded by the specification are fully met.									
PRODUCT DESCRIPTION	The basic flux containing the appropriate alloying elements with a controlled balanced addition of iron powder, is extruded onto a high purity ferritic core wire with a blend of silicated that ensures both coating strength and a coating resistant to subsequent moisture absorption.									
WELDING FEATURES	The chemical nature of the flux together with a significant proportion of iron powder ensures maximum deposition efficiency without detracting from its ability to be used in all positions except vertical down.									
OF THE ELECTRODE	Overall the arc is very stable, slag detachability is good and metal recovery is some 115% with respect to the core wire.									
APPLICATIONS AND MATERIALS TO BE WELDED	PLATES TO: BS1501:Part 2 Grades 622, ASTM A387 Grade 21 and 22. FORGINGS TO: BS1503 Grade 622 CASTINGS TO: BS1504 Grade 622, BS3100 Grade B3. ASTM A217 WC9. PIPES TO: BS3604 Grades 622, ASTM A335 Grades P22. TUBES TO: BS3059 Grade 622/640 and 622/490. ASTM A199, A200 & A213 Grades T22, T36 & T4. A182 F22. FORGINGS TO: BS1503 Grade 660. [Cr Mo V STEELS] CASTINS TO: BS1504 Grade 660, BS3100 Grade B7. [" "] PIPES TO: BS3604 Grade 660. [" "]									
	PRE-HEAT & INTERPASS TEMPERATURES 160°C MIN AND UP TO 250°C FOR THICK SECTIONS									
WELD METAL ANALYSIS COMPOSITION % BY Wt.	MIN	C 0.05	Mn -	Si -	S -	P -	Cr 2.0	Mo 0.9	Fe	
	MAX	0.12	0.9	0.8	0.03	0.03	2.5	1.2		
	TYPICAL	0.06	8.0	0.5	0.01	0.01	2.25	1.0	Bal.	
ALL WELD METAL PROPERTIES (AFTER PWHT : 690 ± 15°C)	PROPERTY			<u>UNITS</u>	MINIMUM	TYPICAL		<u>OTHERS</u>		
	Tensile strength			N/mm²	620	700		H.V.AS WELDE		
	0.2% Proof stress Elongation on 4d			N/mm² %	530 17	620 19		E9018-B3 = HV300		
	Reduction of Area (RA)			% %	-	65		Mn: Si RATIO <2		
	Impact energy -20°C			J	-	80		W. 3110 VII 0 VZ		
WELDING AMPERAGE AC or DC+	Ø (mm)	2.6		3.2	4.0	5.0				
	MIN	60		90	140	180			ĵĵ	
	MAX	100		150	190	200				
OTHER DATA	Electrodes that have become damp should be re-dried at 150 °C for 1 hour.									
RELATED PRODUCTS	Please contact our Technical Department for detail.									