

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

SECTION 5

WI-0304 DS56 RD-18B9 Rev. 4, Date 01.01.2013

RD-18B9	BASIC LOW HYDROGEN ELECTRODE FOR WELDING MODIFIED 9Cr-1Mo STEELS OPERATING AT ELEVATED TEMPERATURES UP TO 650°C											DATA SHEET NO. 56				
SPECIFICATION							!	BS EN	N 1599							
CLASSIFICATION						E CrMo91 B										
WELDING FEATURES OF THE ELECTRODE	The chemical nature of the flux together with a significant proportion of iron powder ensures maximum deposition efficiency without detracting from its ability to be used in all positions except vertical down. Overall the arc is very stable, slag detachability is good and metal recovery is some 115% with respect to the core wire.															
PRODUCT DESCRIPTION	The design optimum with a balanced with a bless	The design emphasis of the chemically basic flux is engineered to ensure the optimum weld metal properties demanded by the specification are fully met. The basic flux containing the appropriate alloying elements with a controlled balanced addition of iron power, is extruded onto a high purity ferritic core wire with a blend of silicated that ensures both coating strength and a coating resistant to subsequent moisture absorption.														
APPLICATIONS AND MATERIALS TO BE WELDED	PLATE ASTM A387 Grade 91, TUBES/PIPES ASTM A335 Grade 91, A234 Grade WP91, A199 Grade T91, A213 Grade T91. BS 3604 Grades CFS & HFS 629-470 CFS/HFS 629-590. FORGINGS A182 Grade F91, A336 Grade F91 CAST ASTM A217 Grade C12A, BS1503 Grade 91 PWHT recommended range is 745 - 775°C (2 hours), pre-heat 200 - 300°C. Cool to 150°C before PWHT.															
WELD METAL ANALYSIS COMPOSITION % BY Wt.		С	Mn	Si	S*	P'	*	Cr	Ni	Мо	Nb	V	Al	N		
	MIN	80.0	-	-	-	-		8.0	-	0.85	0.02	0.15	-	0.02		
	MAX	0.13	1.2		0.015			10.5	8.0		0.10	0.30	0.04	0.07		
	TYPICAL	0.10	0.8	0.25	0.01	0.0		8.5	0.4	1.0	0.03	0.20	0.01	0.03		
ALL WELD METAL PROPERTIES (AFTER PWHT)	*AWS A5.5 specifies S = 0.01% max. at PROPERTY Tensile strength 0.2% Proof stress Elongation on 4d Reduction of Area (RA) Impact energy 20 °C				UNITS N/mm² N/mm² % % J		MINIMUM 620 530 17 -		TYPICAL 750 – 880 620 – 780 21 60 65		OTHERS Results relate to PWHT 765°C furnace cooled					
WELDING AMPERAGE AC or DC+	Ø (mm) 2.6			3.2			4.0		5.0							
	MIN	MIN 50			75			130		180						
	MAX	MAX 85			125		170			220						
OTHER DATA	Electrodes	s that	t have	bec	ome da	amp	sh	nould b	oe re	e-dried	at 150	°C for 1	l hour.			
RELATED PRODUCTS	Please co	ntact	our T	ech	nical De	epar	rtm	ent fo	r de	tail.						