

## MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS48A RD-16BV Rev. 1, Date 01.12.2012

| RD-16BV                                                   | LOW HYDROGEN ELECTRODE<br>FOR WELDING 1.25Cr-0.5Mo-0.2V STEELS<br>SUBJECTED TO SERVICE<br>AT ELEVATED TEMPERATURES UP TO 550 °C                                                                                                                                                                                                                                                                                                                                       |                          |                                                                       |                                       |                        |                                                |                      |                                           | DATA SHEET<br>NO.<br><b>48A</b> |                         |            |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|---------------------------------------|------------------------|------------------------------------------------|----------------------|-------------------------------------------|---------------------------------|-------------------------|------------|
| SPECIFICATION                                             | AWS A5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                       |                                       |                        | GB                                             |                      |                                           |                                 |                         |            |
| CLASSIFICATION                                            | E8016-B2 (mod.)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                                       |                                       |                        | E5515-B2-V                                     |                      |                                           |                                 |                         |            |
| PRODUCT<br>DESCRIPTION                                    | The design emphasis of the chemically basic flux is engineered to ensure the optimum weld metal properties demanded by the specification are fully met.<br>The basic flux containing the appropriate alloying elements but minimal iron powder, is extruded onto a high purity ferritic core wire and bound with a blend of silicates that ensure both coating strength and a coating resistant to subsequent moisture absorption.                                    |                          |                                                                       |                                       |                        |                                                |                      |                                           |                                 |                         |            |
| WELDING<br>FEATURES<br>OF THE<br>ELECTRODE                | The chemical nature of the flux together with its controlled coating factor allows<br>the electrode to be used at relatively low amps. This factor together with the fairly<br>fluid but quick freezing slag facilitate vertical up welding including controlled<br>penetration root runs.<br>Overall the arc is very stable, slag detachability is good, fillet welds are slightly<br>convex and metal recovery is some 98% with respect to weight of the core wire. |                          |                                                                       |                                       |                        |                                                |                      |                                           |                                 |                         |            |
| APPLICATIONS<br>AND<br>MATERIALS<br>TO BE WELDED          | Typically used for welding of 12Cr1MoV steel for such applications :<br>high pressure, over-high pressure, or superheater of pre-critical power station<br>boiler and pipeline, collecting box and mainly adapt to the catheter smoke which<br>operated at elevated temperature up to 550 °C.                                                                                                                                                                         |                          |                                                                       |                                       |                        |                                                |                      |                                           |                                 |                         |            |
| WELD METAL<br>ANALYSIS<br>COMPOSITION<br>% BY Wt.         | MIN<br>MAX<br>TYPICAL<br>* Cr levels for                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05<br>0.12 (<br>0.06 ( | Vn<br>-<br>0.9<br>0.8                                                 | -<br>0.6<br>0.4                       | S<br>-<br>0.03<br>0.07 | 30.                                            | P<br>-<br>.03<br>.01 | Cr<br>0.8<br>1.5<br>1.2                   | Mo<br>0.4<br>0.65<br>0.45       | V<br>0.1<br>0.35<br>0.2 | Fe<br>Bal. |
| ALL WELD METAL<br>PROPERTIES<br>(AFTER PWHT : 690 ± 15°C) | PROPERTY<br>Tensile strength<br>0.2% Proof stress<br>Elongation on 4d<br>Reduction of Area (RA)<br>Impact energy 20 °C                                                                                                                                                                                                                                                                                                                                                |                          | <u>UNITS</u><br>N/mm <sup>2</sup><br>N/mm <sup>2</sup><br>%<br>%<br>J | MINIMUM<br>540<br>440<br>17<br>-<br>- |                        | <u>TYPICAL</u><br>800<br>700<br>22<br>50<br>33 |                      | OTHERS<br>AS WELDED<br>HARDNESS<br>250 HV |                                 |                         |            |
| WELDING<br>AMPERAGE<br>AC or DC+                          | Ø (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø (mm) 2.6               |                                                                       | 3.2                                   | 4.0                    |                                                | 5.0                  |                                           |                                 |                         |            |
|                                                           | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                       |                                                                       | 75                                    | 130                    |                                                | 180                  |                                           |                                 |                         |            |
|                                                           | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                       |                                                                       | 125                                   | 170                    |                                                |                      | 220                                       |                                 |                         |            |
| OTHER DATA                                                | Electrodes that have become damp should be re-dried at 150°C for 1 hour                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                       |                                       |                        |                                                |                      |                                           |                                 |                         |            |
| RELATED<br>PRODUCTS                                       | Please contact our Technical Department for detail.                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                       |                                       |                        |                                                |                      |                                           |                                 |                         |            |