

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS55 RD-16B9 Rev. 5, Date 01.01.2013

RD-16B9	BASIC LOW HYDROGEN ELECTRODE FOR WELDING MODIFIED 9Cr-1Mo STEELS OPERATING AT ELEVATED TEMPERATURES UP TO 650°C										data sheet no. 55							
SPECIFICATION	AWS A5.5							BS EN 1599										
CLASSIFICATION	E9016-B9						E CrMo91 B											
	The design emphasis of the chemically basic flux is engineered to ensure the optimum weld metal properties demanded by the specification are fully met.																	
PRODUCT DESCRIPTION	The basic flux containing the appropriate alloyin is extruded onto a high purity ferritic core wire that ensure both coating strength and a coating absorption.								g elements but minimal iron powder, and bound with a blend of silicates ng resistant to subsequent moisture									
WELDING FEATURES OF THE	The chem electrode but quick root runs.	The chemical nature of the flux together with its controlled coating factor allows the electrode to be used at relatively low amps. This factor together with the fairly fluid but quick freezing slag facilitate vertical up welding including controlled penetration root runs.																
ELECTRODE	Overall the arc is very stable, slag detachability is good, fillet welds are slightly convex and metal recovery is some 98% with respect to weight of the core wire.																	
APPLICATIONS AND MATERIALS TO BE WELDED	PLATEASTM A387 Grade 91,TUBES/PIPESASTM A335 Grade 91, A234 Grade WP91, A199 Grade T91, A213 Grade T91. BS 3604 Grades CFS & HFS 629-470 CFS/HFS 629-590.FORGINGSA182 Grade F91, A336 Grade F91CASTASTM A217 Grade C12A, BS1503 Grade 91PWHT recommended range is 745 - 775°C (2 hours), pre-heat 200 - 300°C. Cool to 150°C before PWHT																	
WELD METAL ANALYSIS COMPOSITION % BY Wt.		С	Mn	Si	S *	P*	Cr	Ni	Мо	Nb	V	Al	Ν					
	MIN	0.08	-	-	-	-	8.0	-	0.85	0.02	0.15	-	0.02					
	IVIAX TYPICAL	0.13	0.9	0.30	0.015	0.015	9.0	0.8	1.2	0.10	0.30	0.04	0.07					
	* AWS A5.5 specifies S = 0.01% max. and P = 0.01% max.																	
ALL WELD METAL PROPERTIES (AFTER PWHT)	<u>PR(</u>	<u>UNITS</u>		MIN	MINIMUM		TYPICAL			<u>OTHERS</u>								
	Tensile strength			N/mm ²		6	620		750 – 880									
	0.2% Proof stress			N/	N/mm ²		530 17		620 – 780 24		Results relate to PWHT 765°C furnace cooled							
	Reduction of Area (RA)			%		1	-		60									
	Impact energy 20 °C			J	J		-		65									
WELDING AMPERAGE AC or DC+	Ø (mm)	Ø (mm) 2.6			3.2		4.0		5.0									
	MIN	5	50		75		130		180									
	MAX	MAX 85			125		170		220									
OTHER DATA	Electrodes that have become damp should be re-dried at 150°C for 1 hour.																	
RELATED PRODUCTS	Please co	ntact c	our Tech	nnica	l Depa	Please contact our Technical Department for detail.												