

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS84 NC-200, Rev. 0, Date 01.09.2008

NC-200	A CHEMICALLY BASIC FLUX COATED MMA ELECTRODE FOR WELDING ALL PURE AND COMMERCIAL GRADES OF NICKEL										DATA SHEET NO. 84	
SPECIFICATION	AWS A5.11			BS EN ISO			14172		JIS	JIS Z 3224		
CLASSIFICATION	ENi-1				E Ni 206			61		DNi-1		
PRODUCT DESCRIPTION	The chemically basic flux is balanced with a controlled rutile content to ensure a fluid slag with a moderate solidification plus pure titanium as a vigorous de- oxidant and de-nitrider. The core wire is pure nickel and the weld metal a nominal 98% Ni - 2%Ti.											
WELDING FEATURES OF THE ELECTRODE	The electrode is suitable for use on DC+ only. The slag fluidity and solidification range ensures excellent positional welding while the use of titanium ensures weld metal refinement and freedom from porosity. Metal recovery is some 100% with respect to the weight of the core wire.											
APPLICATIONS AND MATERIALS TO BE WELDED	For welding nickel to itself. Typical grades include : ASTM - ASME UNS N02200 and N02201. Proprietary alloys include : Nickel 200 and 201 (special metals) Nickel 99.6 and 99.2 (UDM) The above are used for both site and workshop fabrication of chemical plant and pipework involved in alkali storage, chlorination, salt production, or caustic soda evaporation.											
WELD METAL ANALYSIS COMPOSITION % BY Wt.	MIN	C -	Mn -	Si -		S -	P -	Cu -	AI -	Fe -	Ti 1.0	Ni 92
	МАХ	0.1	0.75	1.25	0	.02	0.03	0.25	1.0	0.75	4.0	-
	TYPICAL	0.02	0.2	0.4	0	.01	0.01	0.1	0.1	0.35	2.0	Bal.
WELD METAL PROPERTIES (ALL WELD METAL)	<u>PRO</u>	PERTY		UNIT	<u>S</u>	N	INIMUM		PICAL		OTHER	<u>s</u>
	Tensile strength			N/mm ² 410			410	460				
	0.2% Proof stress			N/mm	2	-		300		HV		
	Elongation on 4d						20	25		150 – 160		
	Reduction of Area (RA) Impact energy -30 °C			% -			-	40				
				J			-	150				
WELDING AMPERE DC+	Ø (mm)			3.2			4.0					
	MIN			70			90					
	MAX			110			150					
OTHER DATA	Electrodes that have become damp should be re-dried at 180 °C for 30 mins.											
RELATED PRODUCTS	Please contact our Technical Department for detail.											