

MANUFACTURERS OF A DIVERSE RANGE OF ADVANCED WELDING CONSUMABLES

WI-0304 DS120 HV-950, Rev. 2, Date 01.01.2011

HV-950	BASIC HARDFACING ELECTRODE DEPOSITING WELD METAL HIGH IN CHROME CARBIDE PROVIDING EXCELLENT RESISTANCE TO ABRASION							data sheet NO. 120
SPECIFICATION								
CLASSIFICATION						-		
PRODUCT DESCRIPTION	The design emphasis of the chemically basic flux is engineered to ensure that the weld metal hardness levels demanded by the specification are fully met without detracting from the toughness levels associated with this class of alloy.							
	The basic flux containing the appropriate alloying elements and a balanced addition of iron powder is extruded onto a high purity ferritic core wire using a balance of silicates that ensures both coating strength and resistance to moisture absorption.							
WELDING FEATURES	The electrode welds with a smooth stable arc and easily strikes and re-strikes. Weld appearance is bright, almost of polished appearance, smoothly contoured and slag detachability is excellent.							
OF THE ELECTRODE	The metal recovery is some 170% with respect to core wire weights, thus reducing welding time. The weld deposits are non-machinable.							
APPLICATIONS AND MATERIALS TO BE WELDED	Suitable for surfacing a wide range of steels including 13Mn types. Because thermal contractional stresses will cause stress relieving cross-cracking, build-ups should be limited to 3 layers, preferably two when restraint is high.							
	The deposit has excellent resistance to abrasion against minerals, sand and sludges which leads to its extensive use in the earth moving, cement, dredging and steel industries.							
	For build-ups on carbon and low alloy steels or 13Mn steel, NSB-307 should be used as a buffer layer.							
WELD METAL ANALYSIS COMPOSITION % BY Wt.	MIN	C 4.0	Mn -	Si	Cr 45	Mo -	Fe	
	MAX	5.0	1.5	1.0	-	1.0		
	TYPICAL	4.0	0.6	1.8	50	0.6	Bal.	
WELD METAL HARDNESS (ALL WELD METAL)	AS WELDE 300°C PRE-H		Н	RC	ŀ	ΗV		
	1 st Layer		52 - 58		550 – 660		-	
	2 nd Layer		54 – 60		580 – 700		-	
	3 rd Laye	3 rd Layer		56 – 62		- 740	-	
		Actual hardness will be affected on base material composition, number of layers input and welding conditions						imber of layers, heat
WELDING AMPERAGE	Ø (mm)	3.2			4.0		5.0	
	MIN	150			190		230	
AC or DC+	MAX	180			250		280	
OTHER DATA	Electrodes that have become damp should be re-dried at 150°C for 1 hour.							
RELATED PRODUCTS	Please contact our Technical Department for detail.							